电竞比分网-中国电竞赛事及体育赛事平台

分享

十大著名“世界級”數(shù)學難題

 安徽文武 2012-04-25
一、七大“千年數(shù)學難題”

 

    美國麻州的克雷(Clay)數(shù)學研究所于2000年5月24日在巴黎法蘭西學院宣布了一件被媒體炒得火熱的大事:對七個“千年數(shù)學難題”的每一個懸賞一百萬美元?! ?/P>

 


 
 

    其中,龐加萊猜想,已由俄羅斯數(shù)學家格里戈里·佩雷爾曼破解。我國中山大學朱熹平教授和旅美數(shù)學家、清華大學兼職教授曹懷東做了證明的封頂工作?! ?/P>

   “千年大獎問題”公布以來,在世界數(shù)學界產(chǎn)生了強烈反響。這些問題都是關于數(shù)學基本理論的,但這些問題的解決將對數(shù)學理論的發(fā)展和應用的深化產(chǎn)生巨大推動。認識和研究“千年大獎問題”已成為世界數(shù)學界的熱點。不少國家的數(shù)學家正在組織聯(lián)合攻關??梢灶A期, “千年大獎問題” 將會改變新世紀數(shù)學發(fā)展的歷史進程。

    七個難題如下:

一、P(多項式時間)問題對NP(非確定多項式時間)問題

  在一個周六的晚上,你參加了一個盛大的晚會。由于感到局促不安,你想知道這一大廳中是否有你已經(jīng)認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鐘,你就能向那里掃視,并且發(fā)現(xiàn)你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環(huán)顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現(xiàn)象的一個例子。與此類似的是,如果某人告訴你,數(shù)13717421可以寫成兩個較小的數(shù)的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因式分解為3607乘上3803,那么你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內(nèi)部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克于1971年陳述的?! ?B>二、霍奇猜想   

   二十世紀的數(shù)學家們發(fā)現(xiàn)了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數(shù)不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數(shù)學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序幾何出發(fā)點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對于所謂射影代數(shù)簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。  

三、龐加萊猜想   

    如果我們伸縮圍繞一個蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想象同樣的橡皮帶以適當?shù)姆较虮簧炜s在一個輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是“單連通的”,而輪胎面不是。大約在一百年以前,龐加萊已經(jīng)知道,二維球面本質(zhì)上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數(shù)學家們就在為此奮斗?! ≡?002年11月和2003年7月之間,俄羅斯的數(shù)學家格里戈里·佩雷爾曼在發(fā)表了三篇論文預印本,并聲稱證明了幾何化猜想。  在佩雷爾曼之后,先后有3組研究者發(fā)表論文補全佩雷爾曼給出的證明中缺少的細節(jié)。這包括密西根大學的布魯斯·克萊納和約翰·洛特;哥倫比亞大學的約翰·摩根和麻省理工學院的田剛;以及理海大學的曹懷東和中山大學的朱熹平?! ?006年8月,第25屆國際數(shù)學家大會授予佩雷爾曼菲爾茲獎。數(shù)學界最終確認佩雷爾曼的證明解決了龐加萊猜想?! ?/P>

四、黎曼假設   

    有些數(shù)具有不能表示為兩個更小的數(shù)的乘積的特殊性質(zhì),例如,2、3、5、7……等等。這樣的數(shù)稱為素數(shù);它們在純數(shù)學及其應用中都起著重要作用。在所有自然數(shù)中,這種素數(shù)的分布并不遵循任何有規(guī)則的模式;然而,德國數(shù)學家黎曼(1826~1866)觀察到,素數(shù)的頻率緊密相關于一個精心構造的所謂黎曼蔡塔函數(shù)z(s$的性態(tài)。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經(jīng)對于開始的1,500,000,000個解驗證過。證明它對于每一個有意義的解都成立將為圍繞素數(shù)分布的許多奧秘帶來光明?! ?/P>

五、楊-米爾斯存在性和質(zhì)量缺口   

    量子物理的定律是以經(jīng)典力學牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發(fā)現(xiàn),量子物理揭示了在基本粒子物理與幾何對象的數(shù)學之間的令人注目的關系?;跅睿谞査狗匠痰念A言已經(jīng)在如下的全世界范圍內(nèi)的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所筑波。盡管如此,他們的既描述重粒子、又在數(shù)學上嚴格的方程沒有已知的解。特別是,被大多數(shù)物理學家所確認、并且在他們的對于“夸克”的不可見性的解釋中應用的“質(zhì)量缺口”假設,從來沒有得到一個數(shù)學上令人滿意的證實。在這一問題上的進展需要在物理上和數(shù)學上兩方面引進根本上的新觀念?! ?/P>

六、納維葉-斯托克斯方程的存在性與光滑性    

    起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現(xiàn)代噴氣式飛機的飛行。數(shù)學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰(zhàn)在于對數(shù)學理論作出實質(zhì)性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。 

七、貝赫和斯維訥通-戴爾猜想   

    數(shù)學家總是被諸如x2+y2=z2那樣的代數(shù)方程的所有整數(shù)解的刻畫問題著迷。歐幾里德曾經(jīng)對這一方程給出完全的解答,但是對于更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數(shù)解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數(shù)z(s)在點s=1附近的性態(tài)。特別是,這個有趣的猜想認為,如果z(1)等于0,那么存在無限多個有理點(解),相反,如果z(1)不等于0,那么只存在有限多個這樣的點。

 

                                    二、世界近代三大數(shù)學難題

1、費爾馬大定理

    費爾馬大定理起源于三百多年前,挑戰(zhàn)人類3個世紀,多次震驚全世界,耗盡人類眾多最杰出大腦的精力,也讓千千萬萬業(yè)余者癡迷。終于在1994年被安德魯·懷爾斯攻克。古希臘的丟番圖寫過一本著名的“算術”,經(jīng)歷中世紀的愚昧黑暗到文藝復興的時候,“算術”的殘本重新被發(fā)現(xiàn)研究。

  1637年,法國業(yè)余大數(shù)學家費爾馬(Pierre de Fremat)在“算術”的關于勾股數(shù)問題的頁邊上,寫下猜想:x^n+ y^n =z^n 是不可能的(這里n大于2;x,y,z,n都是非零整數(shù))。此猜想后來就稱為費爾馬大定理。費爾馬還寫道“我對此有絕妙的證明,但此頁邊太窄寫不下”。一般公認,他當時不可能有正確的證明。猜想提出后,經(jīng)歐拉等數(shù)代天才努力,200年間只解決了n=3,4,5,7四種情形。1847年,庫木爾創(chuàng)立“代數(shù)數(shù)論”這一現(xiàn)代重要學科,對許多n(例如100以內(nèi))證明了費爾馬大定理,是一次大飛躍?! v史上費爾馬大定理高潮迭起,傳奇不斷。其驚人的魅力,曾在最后時刻挽救自殺青年于不死。他就是德國的沃爾夫斯克勒,他后來為費爾馬大定理設懸賞10萬馬克(相當于現(xiàn)在160萬美元多),期限1908-2007年。無數(shù)人耗盡心力,空留浩嘆。最現(xiàn)代的電腦加數(shù)學技巧,驗證了400萬以內(nèi)的N,但這對最終證明無濟于事。1983年德國的法爾廷斯證明了:對任一固定的n,最多只有有限多個x,y,z振動了世界,獲得費爾茲獎(數(shù)學界最高獎)?! v史的新轉(zhuǎn)機發(fā)生在1986年夏,貝克萊·瑞波特證明了:費爾馬大定理包含在“谷山豐—志村五朗猜想 ” 之中。童年就癡迷于此的懷爾斯,聞此立刻潛心于頂樓書房7年,曲折卓絕,匯集了20世紀數(shù)論所有的突破性成果。終于在1993年6月23日劍橋大學牛頓研究所的“世紀演講”最后,宣布證明了費爾馬大定理。立刻震動世界,普天同慶。不幸的是,數(shù)月后逐漸發(fā)現(xiàn)此證明有漏洞,一時更成世界焦點。這個證明體系是千萬個深奧數(shù)學推理連接成千個最現(xiàn)代的定理、事實和計算所組成的千百回轉(zhuǎn)的邏輯網(wǎng)絡,任何一環(huán)節(jié)的問題都會導致前功盡棄。懷爾斯絕境搏斗,毫無出路。1994年9月19日,星期一的早晨,懷爾斯在思維的閃電中突然找到了迷失的鑰匙:解答原來就在廢墟中!他熱淚奪眶而出。懷爾斯的歷史性長文“模橢圓曲線和費爾馬大定理”1995年5月發(fā)表在美國《數(shù)學年刊》第142卷,實際占滿了全卷,共五章,130頁。1997年6月27日,懷爾斯獲得沃爾夫斯克勒10萬馬克懸賞大獎。離截止期10年,圓了歷史的夢。他還獲得沃爾夫獎(1996.3),美國國家科學家院獎(1996.6),費爾茲特別獎(1998.8)。

2、四色問題

  四色問題的內(nèi)容是:“任何一張地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。”用數(shù)學語言表示,即“將平面任意地細分為不相重疊的區(qū)域,每一個區(qū)域總可以用1,2,3,4這四個數(shù)字之一來標記,而不會使相鄰的兩個區(qū)域得到相同的數(shù)字。”(右圖)  這里所指的相鄰區(qū)域,是指有一整段邊界是公共的。如果兩個區(qū)域只相遇于一點或有限多點,就不叫相鄰的。因為用相同的顏色給它們著色不會引起混淆。  四色猜想的提出來自英國。1852年,畢業(yè)于倫敦大學的弗南西斯·格思里來到一家科研單位搞地圖著色工作時,發(fā)現(xiàn)了一種有趣的現(xiàn)象:“看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。”這個現(xiàn)象能不能從數(shù)學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經(jīng)堆了一大疊,可是研究工作沒有進展?! ?852年10月23日,他的弟弟就這個問題的證明請教了他的老師、著名數(shù)學家德·摩爾根,摩爾根也沒有能找到解決這個問題的途徑,于是寫信向自己的好友、著名數(shù)學家漢密爾頓爵士請教。漢密爾頓接到摩爾根的信后,對四色問題進行論證。但直到1865年漢密爾頓逝世為止,問題也沒有能夠解決?! ?872年,英國當時最著名的數(shù)學家凱利正式向倫敦數(shù)學學會提出了這個問題,于是四色猜想成了世界數(shù)學界關注的問題。世界上許多一流的數(shù)學家都紛紛參加了四色猜想的大會戰(zhàn)。1878~1880年兩年間,著名的律師兼數(shù)學家肯普泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了?! 】掀盏淖C明是這樣的:首先指出如果沒有一個國家包圍其他國家,或沒有三個以上的國家相遇于一點,這種地圖就說是“正規(guī)的”(左圖)。如為正規(guī)地圖,否則為非正規(guī)地圖(右圖)。一張地圖往往是由正規(guī)地圖和非正規(guī)地圖聯(lián)系在一起,但非正規(guī)地圖所需顏色種數(shù)一般不超過正規(guī)地圖所需的顏色,如果有一張需要五種顏色的地圖,那就是指它的正規(guī)地圖是五色的,要證明四色猜想成立,只要證明不存在一張正規(guī)五色地圖就足夠了?! 】掀帐怯?FONT color=#000000>歸謬法來證明的,大意是如果有一張正規(guī)的五色地圖,就會存在一張國數(shù)最少的“極小正規(guī)五色地圖”,如果極小正規(guī)五色地圖中有一個國家的鄰國數(shù)少于六個,就會存在一張國數(shù)較少的正規(guī)地圖仍為五色的,這樣一來就不會有極小五色地圖的國數(shù),也就不存在正規(guī)五色地圖了。這樣肯普就認為他已經(jīng)證明了“四色問題”,但是后來人們發(fā)現(xiàn)他錯了?! 〔贿^肯普的證明闡明了兩個重要的概念,對以后問題的解決提供了途徑。第一個概念是“構形”。他證明了在每一張正規(guī)地圖中至少有一國具有兩個、三個、四個或五個鄰國,不存在每個國家都有六個或更多個鄰國的正規(guī)地圖,也就是說,由兩個鄰國,三個鄰國、四個或五個鄰國組成的一組“構形”是不可避免的,每張地圖至少含有這四種構形中的一個?! 】掀仗岢龅牧硪粋€概念是“可約”性?!翱杉s”這個詞的使用是來自肯普的論證。他證明了只要五色地圖中有一國具有四個鄰國,就會有國數(shù)減少的五色地圖。自從引入“構形”,“可約”概念后,逐步發(fā)展了檢查構形以決定是否可約的一些標準方法,能夠?qū)で罂杉s構形的不可避免組,是證明“四色問題”的重要依據(jù)。但要證明大的構形可約,需要檢查大量的細節(jié),這是相當復雜的?! ?1年后,即1890年,在牛津大學就讀的年僅29歲的赫伍德以自己的精確計算指出了肯普在證明上的漏洞。他指出肯普說沒有極小五色地圖能有一國具有五個鄰國的理由有破綻。不久,泰勒的證明也被人們否定了。人們發(fā)現(xiàn)他們實際上證明了一個較弱的命題——五色定理。就是說對地圖著色,用五種顏色就夠了。后來,越來越多的數(shù)學家雖然對此絞盡腦汁,但一無所獲。于是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。  進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,美國著名數(shù)學家、哈佛大學的伯克霍夫利用肯普的想法,結(jié)合自己新的設想;證明了某些大的構形可約。后來美國數(shù)學家富蘭克林于1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨后又推進到了50國??磥磉@種推進仍然十分緩慢?! 「咚贁?shù)字計算機的發(fā)明,促使更多數(shù)學家對“四色問題”的研究。從1936年就開始研究四色猜想的???,公開宣稱四色猜想可用尋找可約圖形的不可避免組來證明。他的學生丟雷寫了一個計算程序,??瞬粌H能用這程序產(chǎn)生的數(shù)據(jù)來證明構形可約,而且描繪可約構形的方法是從改造地圖成為數(shù)學上稱為“對偶”形著手?! ∷衙總€國家的首都標出來,然后把相鄰國家的首都用一條越過邊界的鐵路連接起來,除首都(稱為頂點)及鐵路(稱為弧或邊)外,擦掉其他所有的線,剩下的稱為原圖的對偶圖。到了六十年代后期,??艘M一個類似于在電網(wǎng)絡中移動電荷的方法來求構形的不可避免組。在??说难芯恐械谝淮我灶H不成熟的形式出現(xiàn)的“放電法”,這對以后關于不可避免組的研究是個關鍵,也是證明四色定理的中心要素?! ‰娮佑嬎銠C問世以后,由于演算速度迅速提高,加之人機對話的出現(xiàn),大大加快了對四色猜想證明的進程。美國伊利諾大學哈肯在1970年著手改進“放電過程”,后與阿佩爾合作編制一個很好的程序。就在1976年6月,他們在美國伊利諾斯大學的兩臺不同的電子計算機上,用了1200個小時,作了100億判斷,終于完成了四色定理的證明,轟動了世界?! ∵@是一百多年來吸引許多數(shù)學家與數(shù)學愛好者的大事,當兩位數(shù)學家將他們的研究成果發(fā)表的時候,當?shù)氐泥]局在當天發(fā)出的所有郵件上都加蓋了“四色足夠”的特制郵戳,以慶祝這一難題獲得解決。  “四色問題”的被證明僅解決了一個歷時100多年的難題,而且成為數(shù)學史上一系列新思維的起點。在“四色問題”的研究過程中,不少新的數(shù)學理論隨之產(chǎn)生,也發(fā)展了很多數(shù)學計算技巧。如將地圖的著色問題化為圖論問題,豐富了圖論的內(nèi)容。不僅如此,“四色問題”在有效地設計航空班機日程表,設計計算機的編碼程序上都起到了推動作用?! 〔贿^不少數(shù)學家并不滿足于計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。直到現(xiàn)在,仍由不少數(shù)學家和數(shù)學愛好者在尋找更簡潔的證明方法。

3、哥德巴赫猜想

  史上和質(zhì)數(shù)有關的數(shù)學猜想中,最著名的當然就是“哥德巴赫猜想”了。  1742年6月7日,德國數(shù)學家哥德巴赫在寫給著名數(shù)學家歐拉的一封信中,提出了兩個大膽的猜想:  一、任何不小于6的偶數(shù),都是兩個奇質(zhì)數(shù)之和;  二、任何不小于9的奇數(shù),都是三個奇質(zhì)數(shù)之和?! ∵@就是數(shù)學史上著名的“哥德巴赫猜想”。顯然,第二個猜想是第一個猜想的推論。因此,只需在兩個猜想中證明一個就足夠了?! ⊥?月30日,歐拉在給哥德巴赫的回信中,明確表示他深信哥德巴赫的這兩個猜想都是正確的定理,但是歐拉當時還無法給出證明。由于歐拉是當時歐洲最偉大的數(shù)學家,他對哥德巴赫猜想的信心,影響到了整個歐洲乃至世界數(shù)學界。從那以后,許多數(shù)學家都躍躍欲試,甚至一生都致力于證明哥德巴赫猜想。可是直到19世紀末,哥德巴赫猜想的證明也沒有任何進展。證明哥德巴赫猜想的難度,遠遠超出了人們的想象。有的數(shù)學家把哥德巴赫猜想比喻為“數(shù)學王冠上的明珠”。  我們從6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……這些具體的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一驗證了3300萬以內(nèi)的所有偶數(shù),竟然沒有一個不符合哥德巴赫猜想的。20世紀,隨著計算機技術的發(fā)展,數(shù)學家們發(fā)現(xiàn)哥德巴赫猜想對于更大的數(shù)依然成立??墒亲匀粩?shù)是無限的,誰知道會不會在某一個足夠大的偶數(shù)上,突然出現(xiàn)哥德巴赫猜想的反例呢?于是人們逐步改變了探究問題的方式?! ?900年,20世紀最偉大的數(shù)學家希爾特,在國際數(shù)學會議上把“哥德巴赫猜想”列為23個數(shù)學難題之一。此后,20世紀的數(shù)學家們在世界范圍內(nèi)“聯(lián)手”進攻“哥德巴赫猜想”堡壘,終于取得了輝煌的成果。  20世紀的數(shù)學家們研究哥德巴赫猜想所采用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數(shù)學方法。解決這個猜想的思路,就像“縮小包圍圈”一樣,逐步逼近最后的結(jié)果。  1920年,挪威數(shù)學家布朗證明了定理“9+9”,由此劃定了進攻“哥德巴赫猜想”的“大包圍圈”。這個“9+9”是怎么回事呢?所謂“9+9”,翻譯成數(shù)學語言就是:“任何一個足夠大的偶數(shù),都可以表示成其它兩個數(shù)之和,而這兩個數(shù)中的每個數(shù),都是9個奇質(zhì)數(shù)之積。” 從這個“9+9”開始,全世界的數(shù)學家集中力量“縮小包圍圈”,當然最后的目標就是“1+1”了?! ?924年,德國數(shù)學家雷德馬赫證明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我國數(shù)學家王元證明了“2+3”。1962年,中國數(shù)學家潘承洞證明了“1+5”,同年又和王元合作證明了“1+4”。1965年,蘇聯(lián)數(shù)學家證明了“1+3”?! ?966年,我國著名數(shù)學家陳景潤攻克了“1+2”,也就是:“任何一個足夠大的偶數(shù),都可以表示成兩個數(shù)之和,而這兩個數(shù)中的一個就是奇質(zhì)數(shù),另一個則是兩個奇質(zhì)數(shù)的積?!边@個定理被世界數(shù)學界稱為“陳氏定理”。  由于陳景潤的貢獻,人類距離哥德巴赫猜想的最后結(jié)果“1+1”僅有一步之遙了。但為了實現(xiàn)這最后的一步,也許還要歷經(jīng)一個漫長的探索過程。有許多數(shù)學家認為,要想證明“1+1”,必須通過創(chuàng)造新的數(shù)學方法,以往的路很可能都是走不通的。

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多